flag-usa USA


A Phantom v2511 captures the beauty of Mach Diamonds with schlieren imaging.

Courtesy: Phil Taylor and Mr. Phred Petersen, RMIT University

image of particle wettability experiment


Scientists and Engineers around the world are constantly striving to improve human life. This includes researching the materials that are present in our lives. Dr. Vitaliy Sechenyh decided to research particle wettability by using a Phantom Miro M310 and a v4.3. His research can aid in the understanding of tablet coating within the pharmaceutical industry and the refining of heavy crude oil by fluid catalytic cracking. 

image of v2512
UHS v2512

The Phantom UHS v2512 delivers the speed necessary for a variety of science applications. Perfect for combustion, lightning analysis, and any other extremely fast experiment. 

image of v2640
UHS v2640

The Phantom v2640 is the most versatile ultrahigh-speed camera with multiple modes for extreme versatility down to the sensor level. Exceptional image quality with low noise concerns are delivered a very high speeds. 

image of VEO4k 990
VEO4K 990S

The Phantom VEO4K 990S has a 9.4 Mpx resolution sensor with 6.75 micron pixel size. Those features make it great for microscopy and small object imaging such as PIV.

VEO 1310
VEO 1310

The Phantom VEO 1310 has a 1.3 Mpx sensor perfect for microscopy applications. The lightweight body and connectivity make it easy to start working in a laboratory environment. 

DIC Tire Testing

Digital image correlation in scientific research applications benefits an assortment of industries. For example, non-contact DIC researcher can analyze and develop new technologies and materials for prosthetics, stronger body materials for cars, and safer construction materials.

image of microfluidics
Microfluidics is used by scientific researchers to develop better medications, a more thorough understanding of biology, even smaller portable devices, and medical advancements such as organs-on-a-chip. Phantom cameras have the sensitivity necessary to observe microscopic details clearly.
image of piv

Particle image velocimetry is a method of scientific research that allows observers to study how fluids move by floating small particles in liquid and then imaging how they move. Phantom cameras have many options to ensure that the data gathered is clear and easy to measure. 

image of schlieren imaging

Schlieren imaging in scientific research uncovers how invisible gases move and are affected by environmental changes. Being a low light method of researchmeans that a Phantom camera with high-sensitivity is important when attempting to gather critical data. 


A high-speed camera for scientific research is going to elevate your ability to observe and identify events in higher detail than ever before. This is an exciting endeavor, but can also be daunting, especially when you are attempting to establish which type of camera would work best for the experiments you will be performing.

The easiest way to decide which camera you will need is to answer four key questions about your laboratory and your research.

• Speed - How fast is it going?
• Size & Resolution - How large is the event and what resolution is required?
• Illumination - How much light is required to clearly see the experiment?
• Proximity - How close does the camera need to be to the event?

Regardless of what you are recording, the above will always be important. Please do not hesitate to contact us so that a trained Phantom camera expert can assist you in deciding which camera you will need.

We began as a small company seeking to improve education through high-speed imaging and we have not forgotten our roots. We have developed the A+ Academic Advantage program. This special program is built built for educators worldwide to encourage the advancement of technology at educational institutions. Research and growth by capturing an image when it’s too fast to see, and too important not to®.

Friday, July 29, 2022
High-speed cameras are essential in advancing additive manufacturing by allowing researchers to focus on understanding the influence of laser power, beam diameter, manufacturing pattern and other variables on the manufacturing process. Keep Reading
Tuesday, March 29, 2022
How the simultaneous application of PIV and PLIF measurement techniques sheds light on turbulent entrainment, a process that has implications for oil spills, wind farms and more. Keep Reading
Thursday, March 24, 2022
Researchers and their industry partners can use high-speed imaging to more accurately predict instability in certain construction materials, allowing them to improve the materials to better resist cracking. Keep Reading